Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.

Identifieur interne : 004038 ( Main/Exploration ); précédent : 004037; suivant : 004039

Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.

Auteurs : J. Ybarra [États-Unis] ; P M Horowitz

Source :

RBID : pubmed:7559433

Descripteurs français

English descriptors

Abstract

For the first time, it has been shown that GroEL can be converted from tetradecamers (14-mers) to monomers under conditions commonly used for the preparation of this chaperonin. The essential requirements are the simultaneous presence of nucleotides such as MgATP or MgADP and a solid-phase anion-exchange medium. The monomers that are formed are metastable in that they only reassemble to a small degree in the absence of additives. These results are in keeping with previous studies on high pressure dissociation that showed the separated monomers display conformational plasticity and can undergo conformational relaxation when relieved of the constraints of the quaternary structure in the oligomer (Gorovits, B., Raman, C. S., and Horowitz, P. M. (1995) J. Biol. Chem. 270, 2061-2066). The monomers display greatly enhanced hydrophobic exposure to the probe 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid, although they are not active in folding functions, and they are unable to form complexes with partially folded rhodanese. The monomers can be completely reassembled to 14-mers by incubation in 1 M ammonium sulfate. There is no evidence of intermediates in the reassembly process. Compared with the original oligomers, the reassembled 14-mers have (a) very low levels of polypeptide contaminants and tryptophan-like fluorescence, two problems that previously hampered spectroscopic studies of GroEL structure and function; (b) functional properties that are very similar to the original material; (c) considerably decreased hydrophobic exposure in the native state; and (d) a similar triggered exposure of hydrophobic surfaces after treatment with urea or spermidine. This study demonstrates that the quaternary structure of GroEL is more labile than previously thought. These results are consistent with suggestions that nucleotides can loosen subunit interactions and show that changes in quaternary structure can operate under conditions where GroEL function has been demonstrated.

DOI: 10.1074/jbc.270.39.22962
PubMed: 7559433


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.</title>
<author>
<name sortKey="Ybarra, J" sort="Ybarra, J" uniqKey="Ybarra J" first="J" last="Ybarra">J. Ybarra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760</wicri:regionArea>
<wicri:noRegion>San Antonio 78284-7760</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, P M" sort="Horowitz, P M" uniqKey="Horowitz P" first="P M" last="Horowitz">P M Horowitz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7559433</idno>
<idno type="pmid">7559433</idno>
<idno type="doi">10.1074/jbc.270.39.22962</idno>
<idno type="wicri:Area/PubMed/Corpus">002805</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002805</idno>
<idno type="wicri:Area/PubMed/Curation">002805</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002805</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002676</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002676</idno>
<idno type="wicri:Area/Ncbi/Merge">002896</idno>
<idno type="wicri:Area/Ncbi/Curation">002896</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002896</idno>
<idno type="wicri:doubleKey">0021-9258:1995:Ybarra J:inactive:groel:monomers</idno>
<idno type="wicri:Area/Main/Merge">004096</idno>
<idno type="wicri:Area/Main/Curation">004038</idno>
<idno type="wicri:Area/Main/Exploration">004038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.</title>
<author>
<name sortKey="Ybarra, J" sort="Ybarra, J" uniqKey="Ybarra J" first="J" last="Ybarra">J. Ybarra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760</wicri:regionArea>
<wicri:noRegion>San Antonio 78284-7760</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, P M" sort="Horowitz, P M" uniqKey="Horowitz P" first="P M" last="Horowitz">P M Horowitz</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Diphosphate (pharmacology)</term>
<term>Adenosine Triphosphate (pharmacology)</term>
<term>Anilino Naphthalenesulfonates</term>
<term>Chaperonin 60 (chemistry)</term>
<term>Chaperonin 60 (isolation & purification)</term>
<term>Chaperonin 60 (metabolism)</term>
<term>Chromatography, Ion Exchange</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Escherichia coli (metabolism)</term>
<term>Fluorescent Dyes</term>
<term>Kinetics</term>
<term>Macromolecular Substances</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Thiosulfate Sulfurtransferase (chemistry)</term>
<term>Thiosulfate Sulfurtransferase (isolation & purification)</term>
<term>Thiosulfate Sulfurtransferase (metabolism)</term>
<term>Urea (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADP (pharmacologie)</term>
<term>Adénosine triphosphate (pharmacologie)</term>
<term>Anilino-naphtalènesulfonates</term>
<term>Chaperonine-60 ()</term>
<term>Chaperonine-60 (isolement et purification)</term>
<term>Chaperonine-60 (métabolisme)</term>
<term>Chromatographie d'échange d'ions</term>
<term>Cinétique</term>
<term>Colorants fluorescents</term>
<term>Conformation des protéines</term>
<term>Dénaturation des protéines</term>
<term>Escherichia coli (métabolisme)</term>
<term>Pliage des protéines</term>
<term>Spectrophotométrie UV</term>
<term>Structures macromoléculaires</term>
<term>Thiosulfate sulfurtransferase ()</term>
<term>Thiosulfate sulfurtransferase (isolement et purification)</term>
<term>Thiosulfate sulfurtransferase (métabolisme)</term>
<term>Urée (pharmacologie)</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chaperonin 60</term>
<term>Thiosulfate Sulfurtransferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Chaperonin 60</term>
<term>Thiosulfate Sulfurtransferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chaperonin 60</term>
<term>Thiosulfate Sulfurtransferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adenosine Diphosphate</term>
<term>Adenosine Triphosphate</term>
<term>Urea</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Anilino Naphthalenesulfonates</term>
<term>Fluorescent Dyes</term>
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Chaperonine-60</term>
<term>Thiosulfate sulfurtransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperonine-60</term>
<term>Escherichia coli</term>
<term>Thiosulfate sulfurtransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>ADP</term>
<term>Adénosine triphosphate</term>
<term>Urée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Ion Exchange</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Kinetics</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Anilino-naphtalènesulfonates</term>
<term>Chaperonine-60</term>
<term>Chromatographie d'échange d'ions</term>
<term>Cinétique</term>
<term>Colorants fluorescents</term>
<term>Conformation des protéines</term>
<term>Dénaturation des protéines</term>
<term>Pliage des protéines</term>
<term>Spectrophotométrie UV</term>
<term>Structures macromoléculaires</term>
<term>Thiosulfate sulfurtransferase</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the first time, it has been shown that GroEL can be converted from tetradecamers (14-mers) to monomers under conditions commonly used for the preparation of this chaperonin. The essential requirements are the simultaneous presence of nucleotides such as MgATP or MgADP and a solid-phase anion-exchange medium. The monomers that are formed are metastable in that they only reassemble to a small degree in the absence of additives. These results are in keeping with previous studies on high pressure dissociation that showed the separated monomers display conformational plasticity and can undergo conformational relaxation when relieved of the constraints of the quaternary structure in the oligomer (Gorovits, B., Raman, C. S., and Horowitz, P. M. (1995) J. Biol. Chem. 270, 2061-2066). The monomers display greatly enhanced hydrophobic exposure to the probe 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid, although they are not active in folding functions, and they are unable to form complexes with partially folded rhodanese. The monomers can be completely reassembled to 14-mers by incubation in 1 M ammonium sulfate. There is no evidence of intermediates in the reassembly process. Compared with the original oligomers, the reassembled 14-mers have (a) very low levels of polypeptide contaminants and tryptophan-like fluorescence, two problems that previously hampered spectroscopic studies of GroEL structure and function; (b) functional properties that are very similar to the original material; (c) considerably decreased hydrophobic exposure in the native state; and (d) a similar triggered exposure of hydrophobic surfaces after treatment with urea or spermidine. This study demonstrates that the quaternary structure of GroEL is more labile than previously thought. These results are consistent with suggestions that nucleotides can loosen subunit interactions and show that changes in quaternary structure can operate under conditions where GroEL function has been demonstrated.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Horowitz, P M" sort="Horowitz, P M" uniqKey="Horowitz P" first="P M" last="Horowitz">P M Horowitz</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ybarra, J" sort="Ybarra, J" uniqKey="Ybarra J" first="J" last="Ybarra">J. Ybarra</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004038 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004038 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7559433
   |texte=   Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7559433" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021